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Abstract—The demand for higher-resolution stereo images
with high quality has driven the rapid development of stereo im-
age super-resolution (SR) techniques, which offer high-resolution
(HR) stereo image pairs with finer details. However, existing
methods either suffer from blurriness (distortion-driven) or
binocular inconsistency (perceptual-driven), due to the intrinsic
conflict, termed distortion-perception-trade-off. This paper ad-
dresses the issues by utilizing the physical constraint of stereo,
which guides a diffusion model to compensate for details in a
binocularly consistent manner to make a good trade-off between
the two terms. In detail, we propose a diffusion-based stereo
SR framework, where the fidelity guidance is modulated into
the diffusion process progressively to offer better perceptual
quality. The physics constraint is embedded into both shallow
and deep layers of the network in the progressive process of
the diffusion model. For the shallow level that tends to affect
textures and high-frequency details, the effect of sampled noise
under stereo scenes is analyzed, and we propose a disparity-
based noise sampling strategy to inject disparity into the diffusion
steps progressively. For a deeper level that has more influence
on semantics and structures, we design a Disparity-Aware State-
Space Module (DASSM), which captures stereo dependency with
a state-space model for stereo fusion in a linear sequential manner
efficiently. Extensive experiments show that our framework
leverages diffusion’s generative power while ensuring stereo
consistency, outperforming prior methods in real-world scenarios.
Code is available on our project homepage.

Index Terms—Stereo super-resolution, Diffusion, Real-world
degradation

I. INTRODUCTION

In recent years, dual cameras have been widely utilized
in various domains such as augmented reality and virtual
reality, mobile devices, autonomous vehicles, and robotics to
capture and perceive the 3D environment. Stereo SR can serve
as a critical supporting technology in these applications to
provide users with accurate content and a better experience.
Stereo super-resolution aims to enlarge the resolution of stereo
images, typically achieved by reconstructing HR details from
a pair of low-resolution (LR) left and right view images.

Usually, the construction of stereo SR relies on the technical
framework of single-image SR, and single-image SR methods
can generally be divided into two categories: distortion-driven
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and perception-driven. The former [1], [2] aims to calculate
the similarity between the SR result and ground truth in terms
of fidelity measure.These methods often yield overly smooth
results, causing a decrease in visual quality. The other cate-
gory [3], [4] aims to generate SR results that are perpetually
close to the ground truth. However, their relaxation of fidelity
requirements often leads to the generation of false textures.
Moreover, they exhibit greater instability in characterizing
image manifolds.

When entering the field of stereo SR, most works still focus
on the fidelity-driven ones [5], [7], [8]. These works achieve
excellent quantitative performance in standard downsampling
scenarios such as bicubic downsampling. However, most of
these methods struggle to meet users’ subjective visual ex-
perience requirements when applied to practical scenarios.
Fig. 1 demonstrates the performance of one of the state-
of-the-art fidelity-driven methods. It can be observed that
while the distortion-driven method performs well in terms of
distortion metrics, the generated images appear overly blurry
for human perception. For other perceptual-driven stereo meth-
ods for stereo SR, the violation of physical properties and
inconsistency in manifold space make the application of these
methods to the stereo domain difficult, leading to poor stereo
consistency and the inability to leverage the advantageous
benefits of physical constraints between stereo viewpoints, as
demonstrated in Fig. 1 by the perceptual-driven method.

This paper hopes to fully exploit the power of generative
models but achieve a good trade-off between fidelity and
perceptual quality via leveraging the powerful generative capa-
bilities of diffusion models and the spatial physics correlations
of stereo images. In detail, we propose a diffusion-based
framework for stereo SR (DiffSSR). We perform distortion-
driven restoration, followed by fidelity-guided diffusion in a
pre-trained single-image generation model, balancing fidelity
preservation and natural image distribution. Stereo consistency
is ensured by incorporating binocular information at both
shallow and deep levels of feature processing progressively.
We analyze how noise generation affects stereo consistency
in diffusion and propose a disparity-aware noise sampling
strategy. In detail, we enhance cross-view correlation and
stereo consistency by embedding disparity information from
distortion-driven results into diffusion noise. To be more
specific, the noise of one view is shared and warped from the
other. For a deeper level, where the semantics and structures
are affected, we design a Disparity-Aware State-Space Module

https://github.com/ZahraFan/DiffSSR
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Fig. 1: Comparison on low-resolution input, distortion-driven method (SwinFIR-SSR [5]), perceptual-driven method (Diff-
BIR [6]), and our method DiffSSR. While the distortion-driven method performs well in terms of distortion metrics, the result
appears overly blurry for human perception. The perceptual-driven method produces rich details but struggles to maintain
binocular consistency and exhibits severe artifacts. Our DiffSSR better preserves stereo consistency and demonstrates superior
performance in both distortion and perceptual quality. PSNR: a fidelity-driven measure, larger better; LPIPS: a perception-
driven measure, lower better. [Zoom in for better view]

(DASSM) for feature fusion. The two views of features
are combined through disparity fusion, followed by a linear
sequence modeling process, which is well-suited for the stereo
diffusion task given that stereo correlation is inherently caused
by the horizontal shift of objects. Effective cross-view interac-
tion of features can help provide complementary information
while keeping stereo consistency.

Our main contributions are summarized as follows:
• We propose a diffusion-based stereo SR framework (Diff-

SSR), which makes a good distortion-perception-trade-
off on stereo SR. We introduce fidelity-driven conditions
into the diffusion process for stereo SR. Our method
takes advantage of the powerful generative capability of
diffusion while maintaining stereo consistency. Sufficient
experiments demonstrate the superior performance of
our method quantitatively and qualitatively in real-world
scenarios.

• We introduce a disparity-aware sampling strategy for
stereo consistency. We utilize disparity estimation from
distortion-driven intermediate results to ensure stereo
consistency during stochastic diffusion sampling. We
show the influence of noise generation on diffusion
performance from both theoretical analysis and empirical
analysis.

• We design a disparity-aware state-space module for the
interaction of binocular features. We analyze the incom-
patibility of previous stereo fusion modules in diffusion
scenarios and address this by utilizing the linear se-
quence modeling of state-space models, which effectively
captures and leverages the feature correlations in stereo
images along the horizontal direction.

II. DIFFSSR

In this section, we begin by briefly introducing the widely
used diffusion models and the state-space module in Sec-
tion II-A. Subsequently, we present the overall structure of our

proposed DiffSSM framework in Section II-B. In Section II-C
and Section II-D, we provide a detailed explanation of two pro-
posed methods designed to ensure stereo consistency: DASSM
and the disparity-aware sampling strategy.

A. Preliminaries

Diffusion Models. DDPM [9] lays the groundwork for both
unconditional and conditional diffusion processes. The for-
ward process begins by applying Gaussian noise over T
steps in a Markov chain to a clean input x0 ∼ q(x0) to
move towards a Gaussian distribution incrementally, while
the reverse diffusion process aims to progressively restore the
good quality image from the Gaussian noise image. In practice,
the noisy data xt at timestep t can be obtained by

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I), (1)

with αt = 1− βt and ᾱt being the cumulative product of αi

from 1 to t, and {β1, . . . , βT } are the variances dictating the
noise level. A simplified training objective is used:

Lt(θ) = Ex0,ϵt [∥ϵt − ϵθ(xt, t)∥2], (2)

where ϵθ is the model prediction process.
Selective Space-state Module. State-space model (SSM) is
used to describe the space state representations and predict
what the next state might be based on certain inputs. The
systems map input stimulation x(t) ∈ RL to output responses
y(t) ∈ RL through a hidden state h(t) ∈ CN , and update the
hidden state by calculating ḣ(t) := d

dth(t).
In the state equation (Eq. 3), matrices A and B respectively

control how the current state and input affect the state’s
evolution. The output equation (Eq. 4) maps the state and
incorporates the input influence into the output via matrices
C and D.

ḣ(t) = Ah(t) +Bx(t), (3)
y(t) = Ch(t) +Dx(t). (4)
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Fig. 2: The framework of DiffSSR. The Stereo Restoration module generates fidelity-driven intermediate results; DASSM is
responsible for stereo feature interaction; Noise Sampling is conducted with stereo consistency.

The selective state-space model excels in feature processing
across NLP and vision fields [10], [11], making it applicable
to a variety of tasks.

B. Diffusion-based Stereo SR Framework

We aim to leverage the powerful generative prior from
Stable Diffusion (SD) to address the problem of reconstructing
low-quality images. We can extend Eq. 2 by incorporating
control information c into the noise estimation process:

Lt(θ) = Ex0,ϵt [∥ϵt − ϵθ(xt, c, t)∥2], (5)

This provides a potential solution for the Stereo SR problem
by treating it as conditional image generation and utilizing
stereo images as conditional inputs.

The overall framework is illustrated in Fig. 2. We first
employ a distortion-driven stereo restoration module to miti-
gate corruptions, such as noise or distortion artifacts but with
relatively poor perceptual quality. The input LR stereo images
are denoted as IL and IR. Then, the intermediate results ILs1
and IRs1 are passed through the encoder part of the diffusion to
obtain the conditional latent fL

c and fR
c , which will be utilized

as the conditional input of the stable diffusion (SD). We denote
the initial noise input to SD as zLT and zRT , while the input at
step t is zLt and zRt , the output zLt−1 and zRt−1, and the sampled
noises xL

t and xR
t . The reverse diffusion process iteratively

updates and the latents of the last timestep go through the
decoder of the latent autoencoder to produce final results ÎL

and ÎR.
We lock the parameters of the stable diffusion network and

replicate the encoder and middle block modules of the UNet
denoiser within the SD to create parallel control modules.
The intermediate features undergo feature fusion through the
Disparity-Aware State-Space Module (DASSM). The resulting
features are passed to the next layer of parallel control modules
and also fed into the UNet decoder part after undergoing
zero convolution. The UNet decoder receives features from
the encoder and integrates them at different module levels.

C. Disparity-Aware State-Space Module

Stereo Cross-Attention Module (SCAM) [7] is a widely
recognized feature fusion module in stereo SR. It calculates
attention between corresponding positions in the left and right
views at the same height. Fig. 3 illustrates the performance of
SCAM in Transformer and Diffusion networks. In Fig. 3(b),
the attention results are closely aligned with the disparity map.
The attention for a given left view position is concentrated on
the corresponding disparity-aware shifted position, and similar
structures can be identified. However, in the diffusion network,
the latent space is more complex, combining high and low-
level features, making it difficult for SCAM to provide effec-
tive guidance. As a result, the attention mechanism struggles to
capture accurate stereo correspondences, as shown in Fig. 3(d).
Moreover, the attention scope is overly restricted, where it
lacks the ability to capture and interact with broader contextual
information. This limitation is particularly detrimental for
generating continuous textures in SR tasks, such as those
involving walls, fabrics, and so on.

To address these issues, we propose the Disparity-Aware
State-Space Module (DASSM), of which the overall structure
is shown in Fig. 4(a). Inspired by the cyclopean image, we
perform disparity fusion at the feature level based on the
binocular relationship as illustrated in Fig. 4(b), ensuring that
features corresponding to the same object in the left and right
views are spatially adjacent. We estimate the disparity map
using intermediate results ILs1 and IRs1. The fused features
are then processed through two branches. One branch under-
goes the operation of a stereo cross-scan module to perform
linear-time sequence modeling. The scan order is depicted in
Fig. 4(c). The results of the two branches are multiplied and
then split back into the original two views. A scaling operation,
controlled by learnable parameters, weights the module’s input
with the output for the final result.

DASSM is well-suited for the stereo fusion task within
our diffusion-based framework, as the diffusion feature space
encompasses both low-level pixel correspondences and high-



(a) Low-resolution input
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(c) Ground truth
Left view Right view

(b) SCAM attention in Transformer
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Fig. 3: SCAM Attention in Transformer and Diffusion Networks. (a) The input LR image pair. (b) SCAM attention in the
Transformer network (SwinFIRSSR [5]). Each row represents the attention of the positions on the central axis in the left view
corresponding to positions in the same row in the right view. The attention maps on layers from shallow to deep are shown
from left to right. (c) Ground truth, where the left view highlights the central axis in red, and the right view indicates the
disparity-aware shifted position. (d) SCAM attention in the Diffusion network (here, our framework).
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Fig. 4: Structure for Disparity-Aware State-Space Module
(DASSM). (a) The overall structure of DASSM. (b) disparity
fusion operation, performed at the feature level in DASSM.
(c) The Stereo Cross-Scan Module (SCSM).

level global characteristics. For low-level features, the dis-
parity fusion provides strong stereo relationship guidance,
while the state-space-based sequence modeling compresses the
contextual information, enhancing the continuity of feature
fusion. For high-level features, disparity fusion ensures an even
distribution of left and right view information during sequence
modeling. The selective state-space mechanism and hidden
state-space facilitate interaction even for high-level features

Ground Truth

SR with noise sequence x1LR input

SR with noise sequence x2

Fig. 5: Similarity of the SR results under the same noise
sequence. [Zoom in for better view]

without explicit stereo correspondences.

D. Stereo-aware Sampling Strategy

Towards modeling scene-level Gaussian noise among stereo
views. The diffusion process is sensitive to the noise generated
in the sampling process, and its results can demonstrate a large
variance in distribution due to the noise sampling in solving
diffusion stochastic differential equations (SDE).

Ma et. al. [16] have analyzed the relation between the initial
noise and the reconstructed distribution of LR images for
diffusion ordinary differential equation (ODE) (e.g., DDIM
sampling). They show that by fixing the initial noise, the SR
results of different LR images with the same initial noise has
similar visual features. As shown in Fig. 5, the SR results
of different LR images show similar global high-frequency
information with same noise sequence. Thus, sharing sampled
noise between left and right views can significantly improve
stereo consistency, thereby avoiding large discrepancies in the
recovered detail. The analysis of this phenomenon can be
found in the supplementary.
Gaussian noise consistency between views based on dis-
parity map. We aim to incorporate stereo guidance into the
sampling process. In the field of video generation and editing,
Chang et. al. [17] find that accurately moving noise samples
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Fig. 6: Visualization comparison among different SR methods [Please zoom in for better view]

TABLE I: Quantitative comparison on Flickr1024RS and Flickr1024Blind datasets. The symbol ↑ indicates that higher metric
values are better, while ↓ indicates the opposite. The best results are highlighted in bold and the second best result is underscored.

Flickr1024RS
Methods LPIPS ↓ DISTS ↓ WaDIQaM ↑ BRISQUE ↓ CLIPIQA ↑ MUSIQ ↑ MANIQA ↑ PI ↓

Real-world SISR method

Real-ESRGAN [12] 0.294 0.163 -0.084 21.138 0.522 67.224 0.385 3.034
StableSR [13] 0.318 0.156 -0.084 26.584 0.546 64.633 0.365 3.465
DiffBIR [6] 0.325 0.154 -0.088 10.405 0.663 69.030 0.457 2.727
DiffIR [14] 0.284 0.161 -0.079 22.586 0.494 65.528 0.350 3.432

Stereo SR method

NAFSSR [7] 0.468 0.250 -0.093 53.540 0.349 54.681 0.295 6.132
Refusion [15] 0.374 0.197 -0.100 14.691 0.662 66.243 0.391 3.319
SwinFIR-SSR [5] 0.404 0.220 -0.085 52.682 0.394 59.460 0.338 5.767
DiffSSR (Ours) 0.276 0.146 -0.081 10.363 0.717 72.481 0.580 3.012

Flickr1024Blind
Methods LPIPS ↓ DISTS ↓ WaDIQaM ↑ BRISQUE ↓ CLIPIQA ↑ MUSIQ ↑ MANIQA ↑ PI ↓

Real-world SISR method

Real-ESRGAN [12] 0.401 0.224 -0.103 15.304 0.557 65.260 0.397 3.207
StableSR [13] 0.447 0.218 -0.102 23.310 0.426 55.541 0.285 3.678
DiffBIR [6] 0.435 0.195 -0.105 8.903 0.653 66.540 0.441 2.586
DiffIR [14] 0.388 0.233 -0.100 18.255 0.499 62.493 0.344 3.500

Stereo SR method

NAFSSR [7] 0.652 0.321 -0.108 66.462 0.262 35.820 0.199 7.656
Refusion [15] 0.477 0.239 -0.111 14.748 0.671 62.830 0.356 3.330
SwinFIR-SSR [5] 0.569 0.299 -0.106 62.147 0.282 47.943 0.257 7.267
DiffSSR (Ours) 0.383 0.213 -0.097 14.954 0.687 69.536 0.540 3.203

between frames based on optical flow helps to maintain the
temporal continuity of the video. This observation holds for
our stereo SR, which is also shown in the supplementary ma-
terial. To better ensure the stereo consistency of the diffusion
results, we employ the first-stage distortion-driven results to
estimate the disparity map.

This disparity estimation serves as guidance in ensuring
stereo coherence throughout the stochastic sampling diffusive
process. Specifically, the noise sampled from the right view
is adapted from the left one, while the noise sampled from
the left view adheres to the standard Gaussian distribution.
The noise sampling strategy is shown in Fig. 2. The missing
values caused by occlusion are sampled from Gaussian.

III. EXPERIMENTS

Datasets. We conduct experiments on simulated real-world
scenarios and LR images from the internet. The Flickr1024RS
dataset [18] underwent simple random degradation, while
the images in Flickr1024Blind were subjected to a more
complex degradation process [12]. The data was sourced from
Flickr1024 dataset [19]. Details are in the supplements.

Implementation Details. We adopt a two-stage degradation
simulation refer to [12] to generate pairs of training data.
We employ the SwinFIR-SSR [5] network for fidelity-driven
stereo restoration and its parameters remained fixed during the
subsequent diffusion training process. Disparity map estima-
tion was conducted by DKT-Stereo [20]. We apply restoration
guidance for better fidelity quality followed DiffBIR [6]. More
implementation details are in the supplements.

Comparison Methods. We conduct both quantitative and
qualitative evaluations. We compared our model with Diff-
BIR [6], Real-ESRGAN [12], DiffIR [14], StableSR [13],
SwinFIR-SSR [5], NAFSSR [7], and Refusion [15] on the
Flickr1024RS and Flickr1024Blind datasets. Among these
official weights of models, Real-ESRGAN, DiffIR, StableSR,
and DiffBIR are trained using the same real-world SR training
pairs generation process as ours. The others are fine-tuned
under our training settings until convergence.

Evaluation Measures. We apply two kinds of metrics.
Full-reference metrics contain LPIPS [21], DISTS [22],
and WaDIQaM [23]. Non-reference metrics contain



TABLE II: Ablation Study on DiffSSR components.
No. Stereo

Sestoration
Noise

Sampling
Stereo
Fusion

Restoration
Guidance LPIPS↓ DISTS↓ MUSIQ↑

1 SwinIR Random - - 0.435 0.195 66.540
2 SwinFIR Random - - 0.413 0.194 66.890
3 SwinFIR Same noise SCAM - 0.407 0.195 70.419
4 SwinFIR Warp noise SCAM - 0.399 0.186 70.620
5 SwinFIR Warp noise DASSM - 0.395 0.184 71.648
6 SwinFIR Warp noise DASSM ✓ 0.383 0.212 69.536

BRISQUE [24], CLIPIQA [25], MUSIQ [26], MANIQA [27],
and PI [28].
Quantitative Evaluation. The quantitative results are shown
in Table I. Our method achieves consistently superior results
to most methods in the perception-driven metrics.
Qualitative Evaluation. The visual comparison results are
presented in Fig. 6. Compared with other methods, ours
archives better visual quality with stereo-consistent sharp
edges and textures while avoiding artifacts. The results of our
method are also more consistent with GT in terms of content.
More visualization is provided in the supplementary.
Ablation Study. We conduct an ablation study on key com-
ponents, including the fidelity-driven stereo restoration, noise-
sampling strategy, DASSM Module, and restoration guidance.
The experimental results in Table II on Flickr1024Blind
demonstrate performance gains for each component, confirm-
ing the effectiveness of our framework design.

IV. CONCLUSION

In conclusion, we present a novel diffusion-based stereo SR
framework that effectively addresses the distortion-perception
trade-off inherent in stereo super-resolution. By integrating the
stereo constraint in both shallow and deep levels of feature
processing, our method achieves remarkable improvements in
resolution and perceptual quality.
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